

Ultra-Low-EMI, RNS, Mono, Filter-Free, Class-D Audio Amplifier

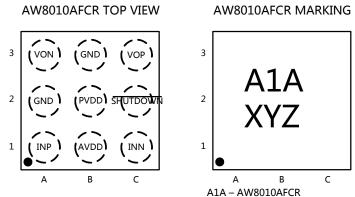
Features

- EEE Function, Greatly reduces EMI over the full bandwidth
- Excellent Pop-Click Supression
- RNS (RF-TDD Noise Suppression)
- 0.1%THD+N (Pout=0.4W,V_{DD}=4.2V)
- Filter-Free Class-D Architecture
- Up to 90% Efficiency
- High PSRR (-70dB at 217Hz)
- Low Quiescent Current (2.6mA)
- Low Shutdown Current $(<0.1 \mu A)$
- Power Supply Range: 2.5V~5.5V
- Over-Current Protection
- Over-Temperature Protection
- Small 1.5mm×1.5mm FC-9 Package
- RoHS compliant, lead-free packages

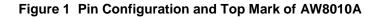
Applications

- Cellular Phones
- MP3/PMP
- GPS
- Digital Photo Frame

General Description


The AW8010A is a ultra-low-EMI,RNS, mono, filter-free, Class-D audio amplifier. Unique RNS, which effectively reduces RF energy, attenuate the RF TDD-noise, an acceptable audible level to the customer.

The AW8010A features the EEE (Enhanced Emission Elimination) function which greatly reduces EMI over the full bandwidth. The AW8010A achieves better than 20dB margin under FCC limits with 24 inch of cable.


The filter-free PWM architecture and internal gain setting reduces external components count, board area consumption, system cost and simplifies the design. In addition, The AW8010 offers efficiencies above 90%. The over-current, over-temperature and under-voltage protection is prepared inside of the device.

The AW8010A is available in an ultra small 1. 5mm×1. 5mm FC-9 package. The AW8010A is specified over the industrial temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C.

Pin Configuration and Top Mark

XYZ – Manufacture Data Code

Pin Definition

No.	Symbol	Description	
A1	INP	Positive audio input	
A2	GND	Ground	
A3	VON	Negative audio output	
B1	AVDD	Power Supply	
B2	PVDD	Power Supply	
B3	GND	Ground	
C1	INN	Negative audio input	
C2	SHUTDOWN	Shutdown pin	
C3	VOP	Positive audio output	

Typical Application

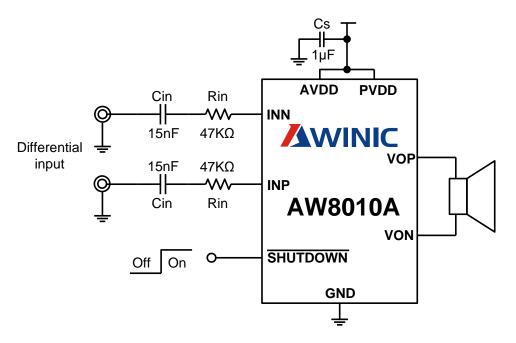


Figure 2 AW8010A Application Schematic With Differential Input

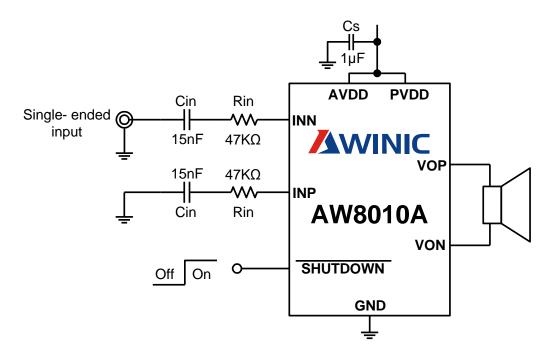


Figure 3 AW8010A Application Schematic With Single-Ended Input

Ordering Information

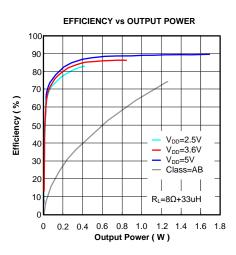
Part Number	Temperature	Package	Marking	Packing Type	
AW8010AFCR	-40℃~85℃	FC-9	A1A	3000 units/Tape and Reel	
AW8010A 🗌 🗌 🗌					
Shipping R: Tape & Reel Package Type FC: FC-9					

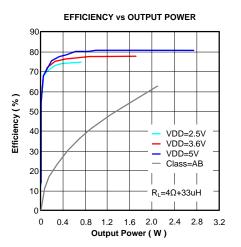
Absolute Maximum Ratings(1)

Parameter	Unit		
Supply voltage V _{DD}	-0.3V to 6V		
Input Voltage	-0.3V to V _{DD} +0.3V		
Package Thermal Resistance θ_{JA}	90°C/W		
Operating free-air temperature	-40℃ to 85℃		
Maximum Junction Temperature T _{JMAX}	125 ℃		
Storage Temperature Range T _{STG}	-65℃ to 150℃		
Lead Temperature (Soldering 10 Seconds)	260 ℃		
ESD Rating(2)			
HBM(human body model)	±8KV		
Latch-up			
Test Condition : JEDEC STANDARD NO.78B DECEMBER 2008	+IT:450mA -IT:-450mA		

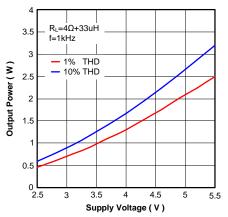
note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

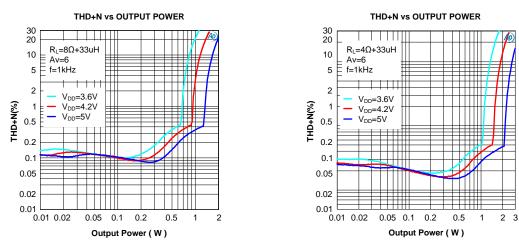
note2: The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. Test method: MIL-STD-883G Method 3015.7.


Electrical Characteristics


Test Condition: V_{DD} =3.6V , T_A =25 °C , R_L =8 Ω +33uH , Cin=33nF , f=1kHz (Unless otherwise specified)

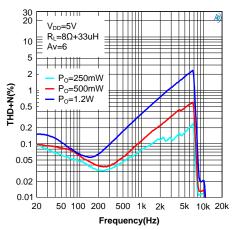
	Parameter	Conditions	Min	Тур	Max	Units
Electric	al Characteristics		1			1
VDD	Power voltage		2.5		5.5	V
V_{IH}	High-level input voltage		1.3			
VIL	Low-level input voltage				0.35	
V _{OS}	Output offset voltage	$V_{IN}=0V, A_V=2V/V, V_{DD}=2.5V$ to 5.5V		5	25	mV
lα	Quiescent current	V _{DD} =3.6V		2.6		mA
I_{SD}	Shutdown current	V _{DD} =3.6V, SHUTDOWN=0V		0.1		μA
PSRR	Power supply rejection ratio	217Hz		-70		dB
CMRR	Common mode rejection ratio			-70		dB
\mathbf{f}_{SW}	Switching frequency	V_{DD} =2.5V to 5.5V		800		kHz
Av	Gain			$\frac{315 k\Omega}{Rin}$		V/V
Operati	ng Characteristics					
		THD+N=10%, R_L =4 Ω +33uH, V_{DD} =5V		2.65		W
		THD+N=1%, R_L =4 Ω +33uH, V_{DD} =5V		2.15		W
		THD+N=10%, R_L =8 Ω +33uH, V_{DD} =5V		1.70		W
		THD+N=1%, R _L =8 Ω +33uH, V _{DD} =5V		1.35		W
		THD+N=10%, R_L =4 Ω +33uH, V_{DD} =4.2V		1.85		W
_	Output power	THD+N=1%, R _L =4 Ω +33uH, V _{DD} =4.2V		1.50		W
Pa	(NCNOFF mode)	THD+N=10%, $R_L=8\Omega+33uH$, $V_{DD}=4.2V$		1.15		W
		THD+N=1%, R _L =8 Ω +33uH, V _{DD} =4.2V		0.90		W
		THD+N=10%, R_L =4 Ω +33uH, V_{DD} =3.6V		1.35		W
		THD+N=1%, R _L =4 Ω +33uH, V _{DD} =3.6V		1.05		W
		THD+N=10%,R _L =8Ω+33uH,V _{DD} =3.6V		0.85		W
		THD+N=1%, R _L =8Ω+33uH, V _{DD} =3.6V		0.65		W
THD+N	Total harmonic distortion plus noise	V_{DD} =5V, Po=0.6W, R _L =8 Ω +33uH		0.1		%
		V _{DD} =4.2V, Po=0.4W, R _L =8Ω+33uH		0.1		%
		V _{DD} =3.6V, Po=0.3W, R _L =8Ω+33uH		0.1		%
η	Efficiency	VDD=5V,Po=1W,R _L =8Ω+33uH		90		%
t _{ST}	Start-up time			40		ms


Typical Operating Characteristics

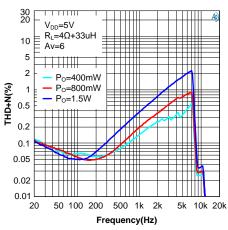


OUTPUT POWER vs SUPPLY VOLTAGE 2.5 R_L=8Ω+33uH f=1kHz 2 1% THD Output Power (W) - 10% THD 1.5 1 0.5 0 2.5 3 3.5 4 4.5 5 5.5 Supply Voltage (V)

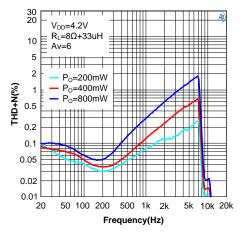
OUTPUT POWER vs SUPPLY VOLTAGE

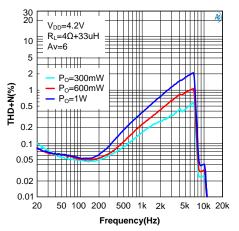


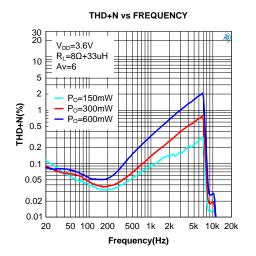
COPYRIGHT ©2012 SHANGHAI AWINIC TECHNOLOGY CO., LTD. Page 6 of 15



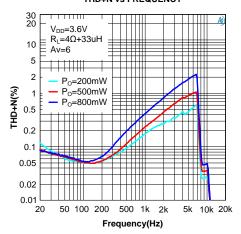
上海艾为电子技术有限公司 SHANGHAI AWINIC TECHNOLOGY CO., LTD.


THD+N vs FREQUENCY

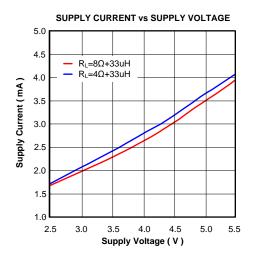

THD+N vs FREQUENCY

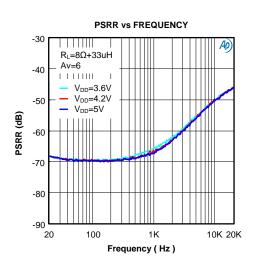


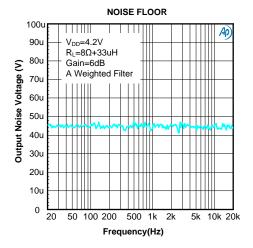
THD+N vs FREQUENCY

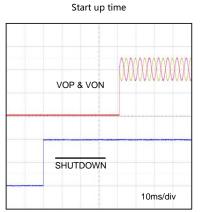


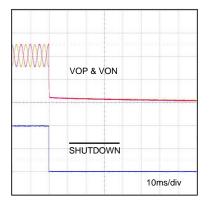
THD+N vs FREQUENCY




THD+N vs FREQUENCY


COPYRIGHT ©2012 SHANGHAI AWINIC TECHNOLOGY CO., LTD. Page 7 of 15





CMRR vs FREQUENCY -50 Ap $V_{IC}=1V_{PP}$ R_L=8 Ω +33uH -55 V_{DD}=3.6V V_{DD}=4.2V CMRR (dB) -60 V_{DD}=5V -65 -70 -75 20 100 1K 10K 20K Frequency (Hz)

COPYRIGHT ©2012 SHANGHAI AWINIC TECHNOLOGY CO., LTD. Page 8 of 15

Block Diagram

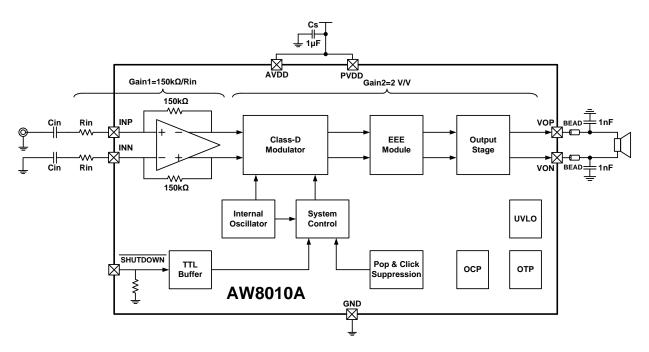


Figure 4 Functional Block Diagram of AW8010A

Operation

The AW8010A is a ultra-low-EMI,RNS, mono, filter-free, Class-D audio amplifier. Unique RNS, which effectively reduces RF energy, attenuate the RF TDD-noise, an acceptable audible level to the customer.

The AW8010A features the EEE (Enhanced Emission Elimination) function which greatly reduces EMI over the full bandwidth. The AW8010A achieves better than 20dB margin under FCC limits with 24 inch of cable.

The filter-free PWM architecture and internal gain setting reduces external components count, board area consumption, system cost and simplifies the design. The over-current, over-temperature and undervol-tage protection is prepared inside of the device, which prevent the device from damage during fault conditions. When the fault condition is removed, the AW8010A reactivate itself again.

Filter-Free Modulation Scheme

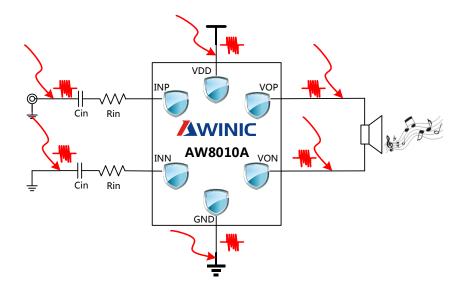
The AW8010A features a filter-free PWM architecture that reduces the LC filter of the traditional Class-D amplifier, increasing efficiency, reducing board area consumption and system cost.

Pop-Click Suppression

The AW8010A features unique timing control circuit, that comprehensively suppresses pop-click noise, eliminates audible transients on shutdown, wakeup, and power-up/down

EEE Technology

The AW8010A features a unique Enhanced Emission Elimination (EEE) technology, that controls fast transition on the output, greatly reduces EMI over the full bandwidth. The AW8010A achieves better than 20dB margin under FCC limits with 24 inch of cable, as shown in Figure 5.


RNS (RF TDD Noise Suppression)

GSM radios transmit using time-division multiple access with 217Hz intervals. The result is an RF signal with strong amplitude modulation at 217Hz and its harmonics that is easily demodulated by audio amplifiers.

In RF applications, improvements to both layout and component selection decrease the AW8010A's susceptibility to RF noise and prevent RF signals from being demodulated into audible noise. Minimizing the trace lengths prevents them from functioning as antennas and coupling RF signals into the AW8010A. Additional RF immunity can also be obtained from relying on the self-resonant frequency of capacitors as it exhibits the frequency response similar to a notch filter. Depending on the manufacturer, 10pF to 20pF capacitors typically exhibit self resonance at RF frequencies. These capacitors, when placed at the input pins, can effectively shunt the RF noise at the inputs of the AW8010A. For these capacitors to be effective, they must have a low-impedance, low-inductance path to the ground plane.

Some RF energy will couple onto audio traces regardless of the effort to prevent this phenomenon from occurring, form audible TDD Noise. The AW8010A features a unique RNS technology, which effectively reduces RF energy, attenuate the RF TDD-noise, an acceptable audible level to the customer.

RF Energy Coupling Diagram

Efficiency

Efficiency of a Class D amplifier is attributed to the switching operation of the output stage transistors. In a Class D amplifier, the output transistors act as current steering switches and consume negligible additional power. Any power loss associated with the Class D output stage is mostly due to the I²R loss of the MOSFET on-resistance and supply current. The AW8010A features efficiency of 90%.

Protection Function

When a short-circuit occurs between VOP/VON pin and VDD/GND or VOP and VON, the over-current circuit shutdown the device, preventing the device from being damaged. When the condition is removed, the AW8010A reactivate itself. When the junction temperature is high, the over-temperature circuit shutdown the device. The circuit switches back to normal operation when the temperature decreases to safe levels. The UVLO circuit will shutdown the device when power supply is low. AW8010A wake-up again when power supply becomes high.

Applications Information

Supply Decoupling Capacitor

The AW8010A is a high-performance class-D audio amplifier that requires adequate power supply decoupling to ensure the efficiency is high and total harmonic distortion (THD) is low. For higher frequency transients, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 1 μ F, placed as close as possible to the device VDD pin works best. For filtering low-er-frequency noise signals, a 10 μ F or greater capacitor placed near the audio power amplifier would also help.

Input Resistors

The input resistors set the gain of the amplifier according to equation as follow.

$$Gain = \frac{2 \times 150 \,\mathrm{k}\Omega}{\mathrm{Rin}} \quad \left(\frac{\mathrm{V}}{\mathrm{V}}\right)$$

The resistors matching is very important. CMRR, PSRR and THD diminish if resistor mismatch occurs. Therefore, it is recommended use 1% tolerance resistors or better to keep the performance optimized. Place the input resistors very close to the AW8010A to limit noise injection on the high- impedance nodes.

Input Capacitor

The input coupling capacitor blocks the DC vol-

tage at the amplifier input terminal. The input capacitors and input resistors form a high-pass filter with the corner frequency, fc.

$$f_C = \frac{1}{2\pi RinCin}.$$

Setting the high-pass filter point high can block the 217Hz GSM noise coupled to inputs. Better matching of the input capacitors improves performance of the circuit and also help to suppress pop-click noise.

Ferrite Chip Bead and Capacitor

The AW8010A passed FCC and CE radiated emissions with no ferrite chip beads and capacitors with speaker trace wires 24 inch.Use ferrite chip beads and capacitors if device near the EMI sensitive circuits and/or there are long leads from amplifier to speaker, placed as close as possible to the output pin.

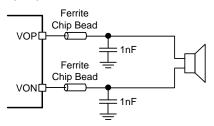
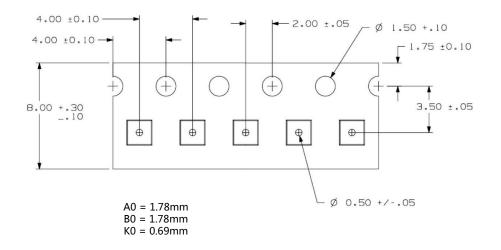
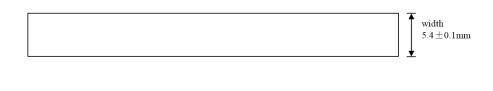
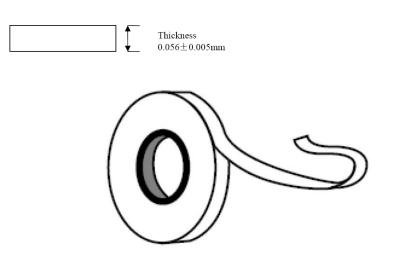
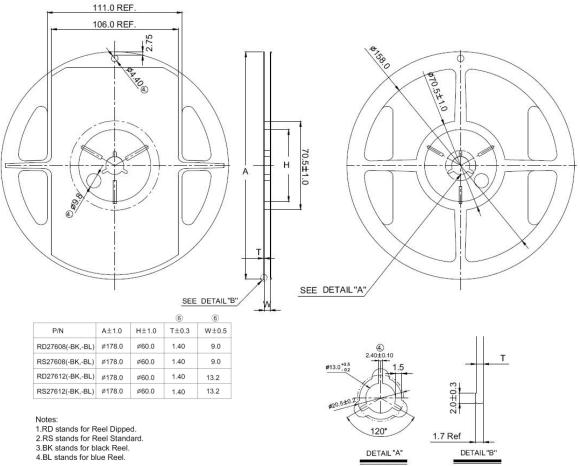



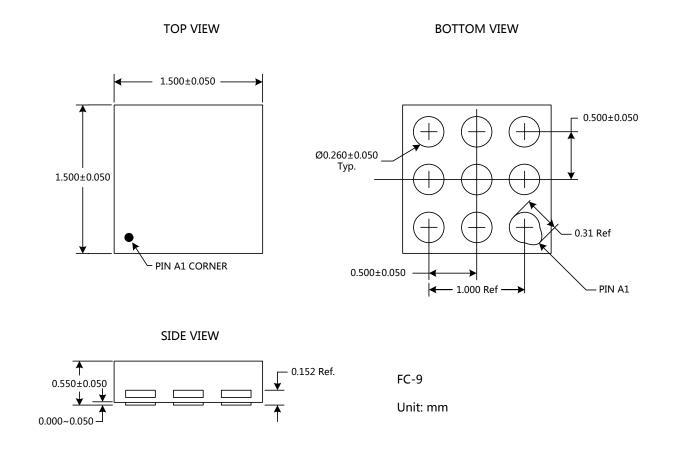
Figure 5 Ferrite Chip Bead and capacitor




Volume description

Carrier Tape


Cover Tape


Reel

COPYRIGHT ©2012 SHANGHAI AWINIC TECHNOLOGY CO., LTD. Page 14 of 15

Package Description

VERSION INFORMATION

Version	Release date	Description
V1.0	2012-2-11	Initial release

AWINIC Technology cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AWINIC Technologies product. No intellectual property or circuit patent licenses are implied. AWINIC Technology reserves the right to change the circuitry and specifications without notice at any time.